ECO: A Generic Eutrophication Model Including Comprehensive Sediment-Water Interaction
نویسندگان
چکیده
The content and calibration of the comprehensive generic 3D eutrophication model ECO for water and sediment quality is presented. Based on a computational grid for water and sediment, ECO is used as a tool for water quality management to simulate concentrations and mass fluxes of nutrients (N, P, Si), phytoplankton species, detrital organic matter, electron acceptors and related substances. ECO combines integral simulation of water and sediment quality with sediment diagenesis and closed mass balances. Its advanced process formulations for substances in the water column and the bed sediment were developed to allow for a much more dynamic calculation of the sediment-water exchange fluxes of nutrients as resulting from steep concentration gradients across the sediment-water interface than is possible with other eutrophication models. ECO is to more accurately calculate the accumulation of organic matter and nutrients in the sediment, and to allow for more accurate prediction of phytoplankton biomass and water quality in response to mitigative measures such as nutrient load reduction. ECO was calibrated for shallow Lake Veluwe (The Netherlands). Due to restoration measures this lake underwent a transition from hypertrophic conditions to moderately eutrophic conditions, leading to the extensive colonization by submerged macrophytes. ECO reproduces observed water quality well for the transition period of ten years. The values of its process coefficients are in line with ranges derived from literature. ECO's calculation results underline the importance of redox processes and phosphate speciation for the nutrient return fluxes. Among other things, the results suggest that authigenic formation of a stable apatite-like mineral in the sediment can contribute significantly to oligotrophication of a lake after a phosphorus load reduction.
منابع مشابه
Review of 15 Years of Research on Sediment Heavy Metal Contents and Sediment Nutrient Release in Inland Aquatic Ecosystems, Turkey
Turkey’s inland water ecosystem consists of 33 rivers (177.714 miles), 200 natural lakes (906.118 ha), 159 reservoirs (342.377 ha) and 750 ponds (15.500 ha). Sedimentological studies conducted on inland water ecosystems during the last 15 years in Turkey can be categorized into two main topics. The first group of studies is concerned with heavy metal levels in sediment, with especial reference ...
متن کاملNumerical Simulation of Sediment Related Processes in Water Quality Model
Sediment is a major nonpoint-source pollutant, and the exchange of materials between water and sediment is an important component of the lake eutrophication process. Suspended sediment increases water surface reflectivity and light attenuation in the water column. Nutrients can be absorbed to sediment particles and desorb from sediment to the water. In addition, nutrients can also be released f...
متن کاملAn eutrophication model for a lowland river-lake system
Natural and man induced nutrient loads affect the functioning of freshwater ecosystems and restrict various water uses. In particular, internal pollution by nutrient remobilisation from sediment plays an important role in shallow water bodies. A sustainable management of such freshwater ecosystems can be achieved by using simulation models. To forecast the eutrophication process of a shallow ri...
متن کاملThree-dimensional hydrodynamic-eutrophication model (HEM-3D): application to Kwang-Yang Bay, Korea.
The purpose of this paper is twofold: to describe the water quality model of Three-Dimensional Hydrodynamic-Eutrophication Model (HEM-3D) and to present an application of HEM-3D to a coastal system in Korea. HEM-3D, listed as a tool for the development of Total Maximum Daily Load by US Environmental Protection Agency, is a general-purpose modeling package for simulation of the flow field, trans...
متن کاملPhosphorus Models for Eutrophic Lakes
Abstract--A model is developed for a highly eutrophic lake (White Lake, Michigan) which incorporates both the water and sediment systems and considers two forms of phosphorus--particulate and dissolved. Dynamic interactions of phosphorus between sediments and water are quantified by taking account particulate phosphorus sinking to the sediment-water interface and diffusion of dissolved phosphor...
متن کامل